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Role of quantum interference in thermodynamic equilibrium

V. I. Savchenko,1 N. J. Fisch,1 A. A. Panteleev,2 and A. N. Starostin2
1Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

2TRINITI and Moscow Institute of Physics and Technology, Moscow Region, Russia
~Received 22 January 1998!

The influence of quantum interference between different decay channels of three-level atoms on various
characteristics of matter and radiation is considered for the case of thermodynamic equilibrium of atoms in a
photon gas. It is shown that for rare gases when collisions between atoms are not important, the direct
consequence of such an interference is a spontaneously induced atomic coherence between two upper levels.
Therefore, for an accurate description of such atoms and radiation in thermodynamic equilibrium with each
other it is not sufficient to specify only Boltzmann exponents, which correspond to the diagonal elements of the
density matrix. The reason for this is that the conventional Boltzmann description is applied to infinitely sharp
eigenstates of the unperturbed Hamiltonian. As we show, it becomes essential to take into account nonzero
width of the levels if the levels are relatively close to each other. This produces nonzero nondiagonal elements
of the density matrix that modify the emissivity of the equilibrium medium and lead to a zero point at a certain
frequency as well as to an enhanced intensity in the red wing at the corresponding temperature. It is shown that
the occupation number of the photons is not changed and obeys the equilibrium Planck distribution.
@S1050-2947~98!06911-X#

PACS number~s!: 42.50.Ct, 42.50.Lc
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I. INTRODUCTION

Quantum interference between different decay chan
@1,2# in three-level atoms has attracted much interest in
cent years@3,4#. It was shown that it leads to the appearan
of nondiagonal elements in the spontaneous relaxation op
tor that are responsible for such effects as lasers with
inversion@5,6#, spectral line narrowing@3,1#, line elimination
@4#, and cancellation of spontaneous emission over the ra
of frequencies@7#.

Depending on the atomic scheme and the environm
considered, quantum interference may be of a different
gin. It may be due to either the coherent laser field@4,8,9# or
spontaneous emission from two closely spaced upper le
@1–3,5# or both @10#. One type of interference is due to co
herent properties of the laser field, while the other one
produced by the coupling of the upper levels to the sa
quantum mode of the radiation field. This interference
known to lead to nondiagonal elements of the relaxation
erator@1–3,5,10,11#, which may also have an additional co
tribution due to Lamb shifts@7#.

In this paper we consider three-level atoms in thermo
namic equilibrium with the resonant photon gas and inve
gate the influence of quantum interference due to spont
ous emission from two upper levels on various properties
radiation and matter. The dipole transitionsu2&→u1& and
u3&→u1& ~see Fig. 1! should be allowed by selection rule
for this interference to occur.

We show that the direct consequence of quantum inter
ence in question is the appearance of a nonzero coher
between upper levels even in thermodynamic equilibriu
This is certainly a surprising result since one would exp
no processes inducing coherence to be present in equ
rium. However, as will become clear later, coupling of t
upper levels to the same quantum mode of the radiation fi
is such a process, which is an inherent property of the ato
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system. Therefore, our conclusion is that to describe the t
modynamic equilibrium of the three-level atoms in questi
with the photon gas it is not sufficient to specify only Bo
zmann exponents, which correspond to the diagonal
ments of the density matrix. One needs to compute non
agonal elements as well, which become nonzero for
atomic system considered. The underlying reason for thi
that the conventional Boltzmann description is applied
infinitely sharp eigenstates of the unperturbed Hamiltoni
in our case the Hamiltonian of the atom. As upper lev
become broadened through the interaction with zero fluc
tions of the radiation field, their overlapping becomes imp
tant and produces nonzero nondiagonal elements of the
sity matrix.

We show that these elements lead to the same Pla
distribution equilibrium that photons should obey. We fin
however, that the quantum interference modifies the emis
ity of the medium, which acquires a dark line at a certa
frequency. More importantly, this interference increas
sharply with the intensity of the recently predicted@12# and

FIG. 1. Three-level atoms.
708 ©1999 The American Physical Society
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PRA 59 709ROLE OF QUANTUM INTERFERENCE IN . . .
observed@13# red wing of the equilibrium spectrum.
We obtained this result under conditions in which atom

vapor is rare enough so that one can neglect collisions
tween atoms and take into account only the interaction w
photons. It is easy to generalize this result to higher dens
and include collisions. Then one has to compare the rat
destruction of atomic coherence due to collisionsnc with the
rate of its creationAA2A3 ~see below! due to quantum inter-
ference in order to draw a conclusion about the form of
spectrum, density matrix, etc. In the case whennc,AA2A3
our main conclusions are still valid.

Note that the model atomic scheme of the Fig. 1 sho
not necessarily be that of an inherent atomic Hamiltonian
fact, dressed states produced by external electric fields
have the desired relaxation matrix. This observation ma
an experimental verification and possible applications of
predicted effects more feasible. In this paper we use the
grammatic approach of Keldysh@14# and Korenman@15#,
which enabled earlier workers@12# to analyze correctly equi
librium spectra.

The paper is organized as follows. In Sec. II we evalu
mass operators. In Sec. III we find atomic Green’s functio
Secs. IV and V are devoted to the calculation of the po
ization operators and the emissivity of the medium. In S
VI we present our conclusion.

II. EVALUATION OF MASS OPERATORS

There are two types of Green’s functions involved in t
calculations according to the Green’s function approach
Keldysh @14# and Korenman@15#: retarded~advanced! and
kinetic, which describe the dynamics and kinetics of the s
tem, respectively. Correspondingly, one needs to evalu
retarded~advanced! and kinetic mass operators.

Consider a three-level atom~Fig. 1! interacting with the
electromagnetic field. It is now well known that if both tra
sitions are allowed, then coupling of both upper levels to
same quantum modes leads to nondiagonal elements in
atomic relaxation operator@1–7,16#. These elements are rep

resented by the nondiagonal mass operatorsS32
aa8 ,S23

aa8 in
the Keldysh-Korenman formalism. As was shown in R
@16#, the real part of these operators, which stems from
Lamb shift contribution, leads to nonexponential decay
atomic populations and coherences. In this paper we o
these terms and restrict ourselves only to the imaginary
of these operators. We also want to remove the Lamb s
contribution to the diagonal terms of retarded~advanced! and
kinetic mass operators.

To do this we use a linear connection betwe
SR,SA,Saa8 and rewriteSR in the form

SR52
1

2
~S222S11!2

1

2
~S122S21!. ~1!

The term in the first set of parentheses is the Lamb s
contribution, while that in the second set represents a re
ation part. Assuming that the Lamb shifts are already
cluded in the corresponding frequencies, we write for
tarded mass operator the formula
e-
h
es
of

e
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SR'2
1

2
~S122S21!. ~2!

Analogously, from

S225SR2S21, S1152SR2S12, ~3!

and Eq.~2! we find

S22'S11'2
1

2
~S121S21!. ~4!

From similar considerations we arrive at the following fo
mula for SA:

SA'
1

2
~S122S21!. ~5!

As can be seen from Eqs.~2!, ~5!, and~4! we need to find
only theS21 andS12 operators. We now evaluate the fir
nonvanishing diagrams, which correspond to the opera
depicted in Fig. 2.

As can be seen from Fig. 2, diagonal terms of the atom
relaxation operator can be obtained from the mass oper
in Fig. 2~a!, while the interference between two decay cha
nels 2→1 and 3→1 is taken into account by the operator
Fig. 2~b!. Other mass operatorsS22

21 ,S23
21 ,S22

12 ,S23
12 , are

represented in similar diagrams.
Analytical expressions, corresponding to the diagrams

Fig. 2, can be written as

S33
21~v,p!5(

i , j
E d31

i d31
j* Di j

21~vph,k!

3G11
21~p2k,v2vph!

dk dvph

~2p!4 ,

S32
21~v,p!5(

i , j
E d31

i d21
j* Di j

21~vph,k!

3G11
21~p2k,v2vph!

dk dvph

~2p!4 ,

where we use the photon Green’s functionDi j
21 in free space

Di j
21~vph,k!5Ji j ~2p!2hvk@nkd~vph2vk!

1~11n2k!d~vph1vk!#, ~6!

FIG. 2. Mass operators of a three-level atom.
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710 PRA 59SAVCHENKO, FISCH, PANTELEEV, AND STAROSTIN
with Ji j 5d i j 2kikj /k2, vk5kc, and nk being the photon
number. Assuming for simplicity that atoms are motionle
Carrying out integrations, we find in the resonance appro
mation

Suu8
21

~vp ,p!5 i
4

3

du1du81h~vp2ep!3

c3 n~vp2ep!N1~p!,

~7!

whereep5p2/2m is the kinetic energy of the atom,du1 is the
reduced dipole moment,N1(p) is the distribution function of
atomic electrons in the ground level, andu andu8 stand for
the upper levels 2 and 3. Mass operatorsSuu8

12 can be ob-
tained fromSuu8

21 by the substitutionsn(v)→11n(v) and
N(p)→12N(p), reflecting the fact that we use Bose stat
tics for photons and Fermi statistics for atoms. The la
choice is not important since we consider the nondegene
situation.

III. EQUATIONS FOR ATOMIC GREEN’S FUNCTIONS

The expressions for the mass operators obtained in Se
describe the interaction of three-level atoms with the gas
resonant photons. They determine the evolution of ato
Green’s functions and hence enter into the correspond
equations. In the quasiclassic approximation equations
the retarded and kinetic Green’s functions of the atoms
be written as

F i S ]

]t
1

p

m

]

]RD2vu1vu8GGuu8
21

~R,t;p,v!

5Suu1

2aGu1u
a11Guu1

2aSu1u8
a1 , ~8!

F i

2

]

]t
1v2vu1

1

8m

]2

]R2 1
ip

2m
•

]

]R
2epGGuu8

R

5duu81Suu1

R Gu1u8
R , ~9!

where it is assumed that the summation is taken over
peated indices.

In this paper we are interested in the case of thermo
namic equilibrium, therefore, we consider the homogene
space, time-independent case. This simplifies Eqs.~8! and
~9! considerably. For the retarded Green’s functions Eq.~9!
gives

~v2v22ep!G22
R 511S22

R G22
R 1S23

R G32
R , ~10!

~v2v32ep!G33
R 511S33

R G33
R 1S32

R G23
R , ~11!

~v2v32ep!G32
R 5S33

R G32
R 1S32

R G22
R , ~12!

~v2v22ep!G23
R 5S22

R G23
R 1S23

R G33
R . ~13!

This system can be easily solved and leads to the follow
answer forGuu8 :

G22
R 5~V32S33

R !/D23, G33
R 5~V22S22

R !/D23, ~14!

G32
R 5S32

R /D23, G23
R 5S23

R /D23, ~15!
.
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D235~V22S22
R !~V32S33

R !2S32
R S23

R , ~16!

where we introduced the notationVu5v2vu2ep .
In the same way we write out by components equatio

for Guu8
21 , using Eq.~8! and linear relations for mass oper

tors and the Green’s functions:

G33
21~S33

122S33
21!1

1

2
~S32

212S32
21!

5S33
21~G33

R 2G33
A !1S32

21~G32
R 2G23

A !, ~17!

G22
21~S22

122S22
21!1

1

2
~S32

212S32
21!

5S22
21~G22

R 2G22
A !1S32

21~G23
R 2G32

A !, ~18!

G33
21S32

A 2G22
21S32

R 1~v231S22
A 2S33

R !G32
21

5S22
21G32

R 2S33
21G32

A 1S32
21~G33

R 2G22
A !, ~19!

2G33
21S32

R 1G22
21S23

A 1~v322S22
R 1S33

A !G23
21

52S22
21G23

A 1S33
21G23

R 1S23
21~G22

R 2G33
A !. ~20!

This system is a system of linear algebraic equations
therefore can be solved easily. To simplify the answer
will use the following relations for the mass operators, whi
follow from Eqs.~2!, ~5!, and~7!:

SR52SA, ~21!

S22
A S33

A 5~S23
A !2. ~22!

Also note from Eqs.~7! and ~15! that the atomic Green’s
functions obey the equalities

G32
R 5G23

R , G32
A 5G23

A . ~23!

As we mentioned in Sec. II, we made use of the fact t
the occupation number of photons is very small, i.e.,nk
!1, and evaluated mass operators in a one-loop approx
tion with accuracyO(nk). It is easy to prove that the follow
ing identity holds in this approximation:

S32
21S32

A S22
A 'S22

21S32
A S32

A . ~24!

Note that this identity still holds if we interchange any tw
lower indices, which may belong even to differentS. We
will use this fact in simplifying the final answers forGuu8

21 .
Now, from Eqs.~17!–~20! with the help of Eqs.~21!–~24!

and plugging in expressions forGuu8
R from Eqs. ~14!–~16!

we arrive at the following answer forGuu8
21 after a few pages

of algebra:

G33
2152S33

21
V2

2

~V2V3!21uV2S33
A 1V3S22

A u2 , ~25!

G22
2152S22

21
V3

2

~V2V3!21uV2S33
A 1V3S22

A u2 , ~26!
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G32
2152S32

21
V2V3

~V2V3!21uV2S33
A 1V3S22

A u2 . ~27!

Note the following property of these equations: Once
know the answer forG33

21 , expressions for all other func
tions can be obtained simply by the appropriate interchan
of indices 3→2 and 2→3.

One can see from Eqs.~25!–~27! that the Green’s func-
tions have a similar structure: The corresponding mass
erators are multiplied by the line contours, which give t
line shape of probability of the atom to emit the photon o
certain frequency. However, the line shapes in Eqs.~25!–
~27! are not normalized. To maintain consistency with t
interference-free case and to clarify the physical meaning
rewrite these equations in such a way as to have normal
contours on the right-hand side. Carrying out integrat
over v we find that the normalized contours are

auu8~v!5
VuVu8Suu8

A

~V2V3!21uV2S33
A 1V3S22

A u2
. ~28!

Using Eqs.~28! and ~5! we rewrite Eqs.~25!–~27! as

Guu8
21

~v,p!52
Suu8

21

Suu8
12

2Suu8
21 2p iauu8~v!. ~29!

Finally, we substitute instead ofn(v) andN1(v) the Planck
and Fermi distributions correspondingly and arrive at the
lowing answer, omitting terms of ordern(v) andN1(ep) in
the expression for the contourauu8(v):

Guu8
21

~v!52
1

ev/T11
2p iauu8~v!, ~30!

auu8~v!5
AAuAu8VuVu8

~V2V3!21
1

4
~V2A31V3A2!2

. ~31!

The most unexpected result that follows from Eqs.~30!
and ~31! is that the nondiagonal atomic Green’s function
not zero in thermodynamic equilibrium. It is known that a
oms acquire coherence between levels as a result of th
teraction with a monochromatic external classical elec
magnetic field. Since an electromagnetic field
thermodynamic equilibrium with atoms does not possess
of these properties, the obvious conclusion would be t
atoms cannot have any nonzero coherence between leve
thermodynamic equilibrium, even when collisions betwe
atoms are neglected. Besides this objection, we do not k
any general theorem that would prevent coherence from
veloping in thermodynamic equilibrium.

The physical reason behind our result, obtained thro
the diagrammatic approach, is that we take into account
interaction of both upper levels with the same quantum m
of the field. As we see later, an electromagnetic field is
scribed by the Planck distribution for the occupation nu
bers and hence does not possess a nonzero electric
Nevertheless, the simultaneous interaction of both upper
els with the same quantum mode is responsible for induc
coherence between atomic levels. An indication that this m
e
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be true was found in our earlier paper@7,16#, where we in-
vestigated the spontaneous emission of an initially exc
atom with interfering decay channels. As was explained
Ref. @16# for the case of a free atom, this coherence is
result of a reabsorption of the virtual photon by differe
atomic levels. The same mechanism is responsible for
atomic coherence in our case of equilibrium.

It is important to realize that such coherence does not l
to a nonzero quadrupole moment of the medium in the
sence of magnetic fields, as it may seem from the equat

Qi j 5 (
uÞu8

quu8
i j ruu8 , ~32!

where the atomic density matrixruu8 is obtained from the
Green’s function through integration overv:

ruu85E Guu8
21

~v,p!
dv

2p
. ~33!

To calculateQi j correctly one needs to carry out calculatio
for the real levels characterized by the angular momen
and its projectionuJ,M j&. Since the relaxation operator, a
obtained in Ref.@16#, has adMaMb

dependence, it can only

lead to Gab}dMaMb
. This coherence, however, leads to

zero quadrupole moment.
Note that Eqs.~30! and ~31! are valid for the two-level

case if we setA350 andv3250. As was rigorously shown in
Ref. @17#, only if the Fermi exponent depends on the flue
photon frequency, rather than on the frequency of atom
transition, does such a Green’s function lead to the cor
Planck distribution for the photons. As we shall see in S
IV, this dependence, which is contained in our result~30!
and ~31!, leads to the same Planck distribution, despite
nonzero coherence of Eqs.~30! and ~31!.

In Sec. II we assumed that the gas of photons is descr
by the occupation numbern(v), which has a Bose-Einstein
distribution. In order to be consistent, we have to obtain
solution for the photonic Green’s functions, using the atom
Green’s functions~30! and ~31!, to see that our choice is
consistent. This consistency check is the subject of the n
section.

IV. POLARIZATION OPERATORS AND PHOTONIC
GREEN’S FUNCTIONS

Now we need to evaluate polarization operators in or
to write down equations for the kinetic Green’s functions f
photons. In the one-loop approximation polarization ope
torsP21 are represented by the sum of diagrams, simila
the one shown in Fig. 3.

An analytical expression for the operatorP21, based on
Fig. 3, can be written as

P21~k,vph!5
i

3 E dv dp

~2p!4 (
u,u8

Guu8
21

~p1k!

3G11
12~p!du1d1u8 . ~34!

Analogously, we can write down expression for the opera
P12:
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P12~k,vph!5
i

3 E dv dp

~2p!4 (
u,u8

Guu8
12

~p1k!

3G11
21~p!du1d1u8 . ~35!

In Eqs.~34! and~35! the atomic Green’s function should b
taken from Eqs.~30! and ~31!. To find the kinetic photon
Green’s functionD21 we need to know the ratioP12:P21

sinceD21 is equal to

D215
P21

P122P21 ~DR2DA!. ~36!

By comparing Eqs.~34! and ~35! we find that

P215evph/TP12. ~37!

Then the functionD21 can be written as

D215
1

evph/T21
~DR2DA!. ~38!

The first multiplier gives the photon statistics, whileDR

2DA determines the line contour of propagation of photo
with different frequencies. We see that the nonzero coh
ence of Eqs.~30! and ~31! does not influence the photo
statistics. As is obvious from Eq.~38!, the photon occupation
number is governed by the Bose-Einstein distribution, wh
proves the consistency of our earlier assumption.

V. EMISSIVITY OF THE MEDIUM

There is one more important characteristic of the medi
in question, namely, its emissivity. It is related to the pol
ization operator through the formula

«~v!52
2iv2

cl2 P21~v!. ~39!

Plugging in an expression forP21 from Eq. ~34! and as-
suming that the lower level has a zero width, we find

«~v!5
4

3

v4

4pc3 @12N~0!#N~v!(
u,u8

du1du81auu8~v!,

~40!

whereN(v)51/(11ev/T) is the Fermi distribution function
In order to see what role is played by interference, we p

e(v)/v from Eq. ~40! with and without interference in Fig
4. The case of no interference can be obtained from Eq.~40!

FIG. 3. Polarization operators of the medium, consisting
three-level atoms.
s
r-

h

-

t

by omitting nondiagonal terms and making theS i i→0 tran-
sition for each contourauu(v).

We plot e(v)/v in Figs. 4 and 5 in different frequenc
ranges in order to outline the influence of the interference
different parts of the spectrum. The atomic parameters
the temperature of the medium are normalized tog2 .

As we can see from Fig. 4, quantum interference lead
the appearance of a zero point in the emission spectrum
the medium, as well as to enhancement of the red wing
tensity ~see Fig. 5!. These graphs are plotted for the gas
atoms, which is in equilibrium with the resonant photon g

f

FIG. 4. Zero point in the emission spectrum. Frequency is n
malized to the widthg2 of the level 2. The atomic parameters a
v32/g2523, v21/g25100, T/g255, d31/d215&, and v31/v21

50.7. The thick and thin lines correspond to spectra with and w
out interference.

FIG. 5. Enhancement of the red wing due to quantum inter
ence. All conventions are the same as in Fig. 4.
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Recall that when a similar medium of three-level ato
interacts with the laser field, the emission spectrum also
a zero point, the so-called dark line@1,4#. Note, however,
that these two cases are different since the properties o
photon fields are fundamentally different.

VI. CONCLUSION

In summary, we considered the influence of quantum
terference between two decay channels of three-level at
on various characteristics of an atomic gas and a radia
field in thermodynamic equilibrium with each other. W
found that in the absence of collisions between atoms,
interference does not change the populations of the ato
electrons, which are governed by Boltzmann statistics
leads, however, to nonzero coherences between upper le
which is due to nonzero nondiagonal elements of the ato
v.
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Green’s functions~30! and ~31!. This coherence does no
change the distribution of photons in equilibrium, whic
obeys the conventional Planck formula~38!. It changes,
however, the emissivity of the medium. Unlike the case
no interference, the emissivity has a zero point at a cer
frequency. More importantly, atomic coherence between
per levels leads to enhancement of the red wing intensity
compared to the case of zero nondiagonal elements of
density matrix. Experimental verification of the predicted e
fects seems feasible owing to recent experiments with
dium dimers@18#.
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